DEFINITIONS OF A GROUP AND A FIELD BY INDEPENDENT

POSTULATES*

BY

LEONARD EUGENE DICKSON+

Introduction.

1. The simple definition here given for a general abstract group relates as to origin and character to Professor Moore's two definitions, Transactions, vol. 3 (1902), pp. 485-492. A few days before the appearance of the addition, Transactions, vol. 5 (1904), p. 549, to his paper, Professor Moore remarked to me that one of his postulates relating to an inverse was redundant, meaning postulate $\binom{3''}{r}$ of his second definition. I thought the reference was to his first definition and attempted to reconstruct the proof of a redundancy, there absent. This attempt led me to alter his postulate $\binom{4}{i}$ to read $aa'_r = i_r$ instead of $a'_i a = i_r$ and to note that postulate $\binom{3}{i}$ becomes redundant in the altered set, thus obtaining the present definition. Subsequently I learned that Professor Moore, in his proof of the redundancy of $\binom{3''}{r}$ in his second definition, had obtained relations ‡ sufficient to establish the present definition but had not applied them to set up the definition itself.

The present postulates for a general group possess the desirable property that they remain independent within sets of postulates for special classes of groups, the specialization being either in the direction of the number (n > 1) of elements or their commutativity (§§ 3-5).

The definition of a field (§ 6), based on the present definition of a group, has evident advantages over the earlier definitions. §

The postulates for a field remain independent under an assumption that the set is finite, or forms an enumerable infinitude, or a non-enumerable infinitude.

^{*}Presented to the Society (Chicago) December 30, 1904, under the title "A definition of a group by independent postulates." Received for publication November 19, 1904. The definition of a field was added January 14, 1905.

[†] Research Assistant to the Carnegie Institution of Washington.

[†] MOORE, this number of Transactions, p. 179.

[§] HUNTINGTON and DICKSON, Transactions, vol. 4 (1903), p. 31, p. 13. For the new definitions by HUNTINGTON, with a bibliography, see this number of Transactions, p. 181.

Definition of a group,
$$\S\S 2-5$$
.

- 2. Given a function $a \circ b$ of two arguments and a set of elements, we will say that the elements form a group with respect to o when the following postulates hold:*
- (1,) For every two \dagger equal or distinct elements a and b of the set, there is a determination of $a \circ b$.
 - (1_2) For a and b in the set, there is at most one determination of $a \circ b$.
- (1_3) If, for a and b in the set, there is at least one determination of $a \circ b$, one determination is an element of the set.
- (2) $(a \circ b) \circ c = a \circ (b \circ c)$ whenever a, b, c, and all the determinations of $a \circ b, b \circ c, (a \circ b) \circ c$, and $a \circ (b \circ c)$ occur in the set.
- (3) There occurs in the set an element i such that, for every element a of the set, $a \circ i$ has the determination a.
- (4) If such elements i occur, then for a particular i, and for every $\ddagger a$ in the set there occurs in the set an element a' such that $a \circ a'$ has the determination i.

Postulates (1,), (1,), (1,) may be combined into the triple statement:

(1) For every two equal or distinct elements a and b of the set $a \circ b$ is uniquely determined as an element of the set.

In view of (3) and (4), to any element a there correspond elements a' and a'' such that $a \circ a' = i$, $a' \circ a'' = i$, where i is a fixed element such that $e \circ i = e$ for every element e. Applying also (1) and (2), we have

$$a = a \circ i = a \circ (a' \circ a'') = (a \circ a') \circ a'' = i \circ a'',$$

 $a' \circ a = a' \circ (i \circ a'') = (a' \circ i) \circ a'' = a' \circ a'' = i.$

Hence $a' \circ a = i$. By this theorem, $a'' \circ a' = i$. Hence

$$i \circ a = (i \circ i) \circ a = [i \circ (a'' \circ a')] \circ a = (i \circ a'') \circ (a' \circ a) = a \circ i = a.$$

Since $a \circ i = a = i \circ a$ for every a, i is called an identity element. If also i_1 is an identity element, then $i_1 = i_1 \circ i = i$. Hence there is an unique identity element. Since $a \circ a' = i = a' \circ a$, a' is called an inverse of a. If also a'_1 is an inverse of a, then

$$a'_{1} = a'_{1} \circ i = a'_{1} \circ (a \circ a') = (a'_{1} \circ a) \circ a' = i \circ a' = a'.$$

Hence there is an unique inverse of each element.

^{*} In (2), (6), and (7), we mean by A = B that one of the determinations of A equals one of the determinations of B.

[†] The assumption need not be made for $a \circ i$ or $a \circ a'$, in view of (3), (4).

[‡] The assumption need not be made for a = i, in view of (3).

- 3. We prove that the postulates (1_1) , (1_2) , (1_3) , (2), (3), (4), (5_k) , k = 1, 2, or 3, are consistent and independent, where
 - (5,) The number of distinct elements is a fixed integer n, n > 1;*
 - (5₂) The distinct elements of the set form an enumerable infinitude;
 - (5,) The distinct elements form a non-enumerable infinitude.

Their consistency follows from the existence of the group of the elements $0, 1, \dots, n-1$ with $a \circ b = a + b \pmod{n}$, and the group of all rational (or real) numbers with $a \circ b = a + b$.

Let I_1 be a set containing i and exactly n-1 further elements b; I_2 or I_3 a set containing i and further elements b forming an enumerable or a non-enumerable infinitude, respectively.

To prove the independence of a postulate (j), we exhibit a set [j] in which postulate (j) fails while each of the remaining postulates hold. In the sets, $a \circ b$ is understood to have a unique determination unless the contrary is stated.

- [1₁] Set I_k , $i \circ i = i$, $b \circ b = i$, $b \circ i = b$, no determination of $i \circ b$ or of $b \circ b'$ ($b \neq b'$).
- $\begin{bmatrix} 1_2 \end{bmatrix}$ Set I_k forming a group under \odot ; $a \circ c$ with the determinations $a \circ c$ and i.
 - [1,] Set I_i ; $i \circ i = i$, $b \circ i = b$, $b \circ b' = i$, $i \circ b$ not in the set.
 - [2] Set I_k ; $i \circ i = i$, $b \circ i = b$, $b \circ b' = i$, $i \circ b = i$.
 - [3] Set I_{i} ; $i \circ i = i$, $b \circ i = i$, $b \circ b' = i$, $i \circ b = i$.
 - [4] Set I_k ; $i \circ i = i$, $b \circ i = b$, $i \circ b = b$, $b \circ b' = b_1$, b_1 a fixed b.
 - 4. We next examine the effect of adding the commutative law:
- (6) $a \circ b = b \circ a$ whenever a, b, and all the determinations of $a \circ b$ and $b \circ a$ occur in the set.

The postulates (1_1) , (1_2) , (1_3) , (2), (3), (4), (5_k) , (6), for k=0, 2, or 3, are consistent and independent. Here the new postulate is

(5,) The number of distinct elements is finite but undetermined.

The proof follows from the sets [1,], [1,2], [1,3], [3], [4] above, and

[2] Set I_k , n > 2; $i \circ i = i$, $i \circ b = b \circ i = b$, $b \circ b = i$, $b \circ b' = b_1(b + b')$,

Then, for $b \neq b_1$, $(b \circ b_1) \circ b_1 = b_1 \circ b_1 = i$, $b \circ (b_1 \circ b_1) = b \circ i = b$.

[6] There exist finite and infinite non-commutative groups. †

The question of the independence of the postulates for k=1 is answered by § 5 in connection with the sets [1,],[1,],[1,],[2]',[3],[4].

5. Theorem. ‡ Let $n = p_1^{a_1} p_2^{a_2} \cdots p_{\nu}^{a_{\nu}}$, where p_1, \dots, p_{ν} are distinct primes, and each $a_j > 0$. The necessary and sufficient conditions that all existing

^{*} For n=1, the group may be defined by the independent postulates (1_1) , (1_2) , (1_3) ; also by the independent postulates (1_2) , (3).

 $[\]dagger$ E. g., that of the transformations $x'=\pm x+b$, where b ranges over all integers, or all real numbers, or the residues modulo m, m>2.

[‡] Addition of February 2, 1905.

groups of order n shall be abelian are: (i) each $\alpha_j \equiv 2$; (ii) no $p_j^{\alpha_j} - 1$ is divisible by one of the primes p_1, \dots, p_s .

We first prove that the conditions are necessary. If $\alpha_1 > 2$, a non-abelian G_n is given by the direct product of the cyclic groups $C_{p_k^{a_k}}(k=2,\dots,v)$ and a non-abelian $G_{p_k^{a_l}}$, say of the type generated by P and Q where

$$P^{p_1a_1-1} = I$$
, $Q^{p_1} = I$, $Q^{-1}PQ = P^{1+p_1a_1-2}$ $(a_1 > 2)$.

If each $\alpha_j \le 2$ and $p_1^{a_1} - 1$ is divisible by p_2 , there exists a non-abelian group of order $p_1^{a_1}p_2^{a_2}$ and hence, as before, one of order n. Indeed, if $\alpha_1 = \alpha_2 = 1$, we use the group generated by P_1 and P_2 where

$$P_1^{p_1} = I, \qquad P_2^{p_2} = I, \qquad P_2^{-1}P_1P_2 = P_1^{\pi} \qquad [p_1 \equiv 1 \pmod{p_2}],$$

where π is an existing primitive root of $x^{p_2} \equiv 1 \pmod{p_1}$. If $\alpha_1 = 1$, $\alpha_2 = 2$, we use the direct product of the preceding group by a cyclic C_{p_2} . If $\alpha_1 = 2$, $\alpha_2 = 1$, the case in which $p_1 - 1$ is divisible by p_2 is disposed of as before, while for $p_1 + 1$ divisible by p_2 , $p_2 > 2$, we use the group * generated by S, T_1 , T_2 , with

$$T_1^{p_1} = T_2^{p_2} = S^{p_2} = I$$
, $T_1 T_2 = T_2 T_1$, $S^{-1} T_1 S = T_2$, $S^{-1} T_2 S = T_1^{-1} T_2^b$,

where b is an (existing) integer such that $x^2 + bx + 1 \equiv 0 \pmod{p_1}$ is irreducible, viz., $b = i + i^{p_1}$, i a mark of the $GF[p_1^2]$ belonging to the exponent p_2 . Finally, if $\alpha_1 = \alpha_2 = 2$, we use the direct product of one of the preceding groups by C_{p_2} .

It remains to prove that the conditions (i) and (ii) are sufficient to make every G_n abelian. To proceed by induction, we assume that this statement is true for every $n' = p_1^{\beta_1} \cdots p_r^{\beta_r}$, $\beta_1 \leq \alpha_1, \cdots, \beta_r \leq \alpha_r$, n' < n. Hence every subgroup of G_n is abelian, so that \dagger either G_n is abelian or else n is divisible by at most two distinct primes. But for n = p, $n = p^2$, or $n = p_1^{\alpha_1} p_2^{\alpha_2}$, $0 < \alpha_1 \leq 2$, $0 < \alpha_2 \leq 2$, $p_1^{\alpha_1} \neq 1 \pmod{p_2}$, $p_2^{\alpha_2} \neq 1 \pmod{p_1}$, G_n is immediately seen to be abelian. Hence the induction is complete.

Definition of a field, §§
$$6-9$$
.

6. We employ a set of elements and two functions $a \oplus b$ and $a \otimes b$. For $o = \oplus$, postulate (j) of §§ 2, 4, with j = 1, 2, 3, 4, or 6, is designated j^+ . An element i satisfying 3^+ is designated i_+ . For $o = \otimes$, (j) is designated j^\times ; but 4^\times is assumed only for elements a distinct from each i_+ . An element i satisfying 3^\times is designated i_\times . As the distributive law we take \dagger

^{*}Hölder, Mathematische Annalen, vol. 43 (1893), pp. 345-357. We may use the form by Cole and Glover, American Journal of Mathematics, vol. 15 (1893), pp. 207-8. † MILLER and Moreno, Transactions, vol. 4 (1903), p. 398.

If we alter (7) to read $a \otimes (b \oplus c) = (a \otimes c) \oplus (a \otimes b)$, we deduce 6+ by taking $a = i_{\times}$ and applying 6×. Then also (7) follows.

(7) $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ whenever a, b, c, and all the determinations of the functions involved occur in the set.

In view of the theorems in §§ 7, 8, we make the definition:* A set of elements forms a field with respect to \oplus and \otimes if postulates 1^+ , 2^+ , 3^+ , 4^+ , 1^\times , 2^\times , 3^\times , 4^\times , 6^\times , and 7 hold.

7. THEOREM.† From 1+, 2+, 3+, 4+, 1×, 3×, 6×, 7, follows 6+. We substitute $\beta \oplus \gamma$ for a in (7), apply 1+, 1×, 6×, 7 and get

$$(\beta \oplus \gamma) \otimes (b \oplus c) = [(b \otimes \beta) \oplus (b \otimes \gamma)] \oplus [(c \otimes \beta) \oplus (c \otimes \gamma)],$$

for every β , γ , b, c in the set. Interchanging b with β , c with γ , and noting that the first member is unaltered in view of 6^{\times} , we get by 6^{\times} and 2^{+} ,

$$(b\otimes\beta)\oplus(c\otimes\beta)\oplus(b\otimes\gamma)\oplus(c\otimes\gamma)=(b\otimes\beta)\oplus(b\otimes\gamma)\oplus(c\otimes\beta)\oplus(c\otimes\gamma),$$

Since 1^+ , 2^+ , 3^+ , 4^+ imply an inverse under \oplus , we get

$$(c \otimes \beta) \oplus (b \otimes \gamma) = (b \otimes \gamma) \oplus (c \otimes \beta).$$

Taking $\beta = \gamma = i_{\times}$, we get $c \oplus b = b \oplus c$.

8. Theorem. Let i_+ be chosen so that 4^+ , as well as 3^+ , is satisfied. Then $a \otimes i_+ = i_+ \otimes a = i_+$ for every element a. If $a \otimes b = i_+$ and $b \neq i_+$, then $a = i_+$. Hence i_+ has the ordinary properties of zero under \oplus and \otimes .

By 7 for $b=c=i_+$, $e=e\oplus e$, where $e=a\otimes i_+$. Hence $(\S\ 2)$, $a\otimes i_+=i_+$ for every a. By 1^\times , 6^\times , $i_+\otimes a=i_+$.

By 2^{\times} , from $a \otimes b = i_{+}$ follows $i_{+} = a \otimes (b \otimes c)$ for every c. Let i_{\times} be chosen so that 4^{\times} , as well as 3^{\times} , holds. Taking c such that $b \otimes c = i_{\times}$, we get $i_{+} = a \otimes i_{\times} = a$.

9. THEOREM. Postulates 1^+ , 2^+ , 3^+ , 4^+ , 1^\times , 2^\times , 3^\times , 4^\times , 6^\times , 7, 5_k (k=0, 2, or 3) are independent.

For k = 0, i. e., for a finite number of elements, we employ the sets:

[1+] Elements 0, 1, -1; $a \oplus b = a + b$, $a \otimes b = a \times b$.

 $[2^+] 0, 1, -1; 0 \oplus a = a \oplus 0 = a, a \oplus b = 0(a \neq 0, b \neq 0), \otimes = \times.$

 $[3+] 0, 1, \dots, n-1 (n > 1); a \oplus b = b, a \otimes b = a + b \pmod{n}.$

^{*} If the set is finite, we may omit 3+ and insert 6+. Then if 3+ fails, all the elements form a group with respect to \otimes . It cannot contain an element a of period α , $\alpha > 1$. Indeed, if we set $y = i_{\times} \oplus a \oplus a^2 \oplus \cdots \oplus a^{\alpha-1}$, we get $a \otimes y = y$, whence $a = i_{\times}$. The single element in the set necessarily satisfies 3+.

[†] Some months after devising this proof I learned that a similar proof had been given by HILBERT, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 8 (1899–1900), p. 183. But earlier writers have noted the essential point in the proof; viz., that the uniqueness of the expansion of $(\beta + \gamma)(b + c)$ depends upon the validity of the commutative law for addition.

[1 $^{\times}$] 0,1; $a \oplus b = a + b \pmod{2}$, $0 \otimes a = 0$, $1 \otimes 1 = 1$, $1 \otimes 0$ not in the set.

[2+] Eight * elements $(\xi, \eta, \zeta), \xi, \eta, \zeta$ taken modulo 2;

$$(\xi, \eta, \zeta) \oplus (x, y, z) = (\xi + x, \eta + y, \zeta + z),$$

$$(\xi, \eta, \zeta) \otimes (x, y, z) = (z\xi + x\zeta, (x+y)\xi + (x+z)\eta + y\zeta, y\xi + x\eta + z\zeta).$$

The latter equals $i_{\times} = (0, 0, 1)$ if $D \equiv \xi + \zeta + \xi \zeta \not\equiv 0 \pmod{2}$ and

$$x \equiv \xi(1+\zeta)/D, y \equiv (\xi+\xi\eta+\eta\zeta)/D, z \equiv \zeta(1+\xi)/D.$$

But $D \equiv 0$ only when $\xi \equiv \zeta \equiv 0$; while if $\xi \equiv \zeta \equiv 0$, $\eta \equiv 1$, we have

$$(0,1,0)\otimes(x,y,z)=(0,x+z,x)=i_{x} \text{ if } x\equiv z\equiv 1.$$

Finally, 2^{\times} fails for a = (0, 1, 0), b = (0, 1, 0), c = (1, 1, 1).

 $[3^{\times}]$ 0, 1; $a \oplus b = a + b \pmod{2}$, $a \otimes b = 0$.

[4 $^{\times}$] $0, 1, \dots, n-1, n$ composite; $a \oplus b = a + b \pmod{n}, a \otimes b = a \times b \pmod{n}$

[6 $^{\times}$] Nine elements a + bj, $a, b \equiv 0, 1, -1 \pmod{3}$;

$$(a+bj)\oplus(c+dj)=a+c+(b+d)j,$$

$$(a+bj) \otimes (c+dj) = ac - (-1)^{ab}bd + \{bc + (-1)^{ab}ad\}j,$$

where the exponent ab is taken in the form 0, 1, or -1. Then $j \otimes j = -1$,

$$j \otimes (1+j) = -1+j, \qquad (1+j) \otimes j = 1-j,$$

so that 6× and the right-hand distributive law fail. For 4×,

$$(a+bj)\otimes\left(\frac{a-(-1)^{ab}bj}{a^2+b^2}\right)=1=i_{\times},$$

since $a^2 + b \equiv 0$ only when $a \equiv b \equiv 0 \pmod{3}$. Computation shows that 2^{\times} holds.

[7] Any finite group of order > 1; $a \oplus b = a \otimes b = a \circ b$.

 $\lceil 5_0 \rceil$ All rational numbers; $\oplus = +, \otimes = \times$.

^{*} A much simpler statement of Σ_7 , Transactions, vol. 4 (1903), p. 20.

For k = 2(k = 3), i. e., for an enumerable (a non-enumerable) infinitude of elements, we employ the following sets [j], R denoting the set of all rational (real) numbers, R_+ that of all positive rational (positive real) numbers:

[1+] R; $\otimes = \times$, $a \oplus 0 = 0 \oplus a = a$, $a \oplus a = 0$, $a \oplus b$ not in R if $a \neq b$, $a \neq 0$ or $b \neq 0$.

$$[2^+]$$
 R ; $\otimes = \times$, $a \oplus a = 0$, $a \oplus b = a + b(a + b)$.

$$[3^+]$$
 R_+ ; $\oplus = +$, $\otimes = \times$.

[4+]
$$R_+$$
 and zero; $\oplus = +$, $\otimes = \times$.

[1 $^{\times}$] R; $\oplus = +$, $a \otimes b = ab$ (if a = 1, b = 1, or ab = 1), otherwise $a \otimes b$ not in R.

[2 \times] Hypercomplex numbers $\alpha + \beta i + \gamma j$, α , β , γ arbitrary in R;

$$egin{array}{c|cccc} \otimes & 1 & i & j \ \hline 1 & i & i & j \ i & -1 & 1 \ j & i & -2 \ \end{array}$$

Then (ii)j = -j, i(ij) = i; $(\alpha + \beta i + \gamma)(x + yi + zj) = 1$ if

$$x = \alpha/\Delta$$
, $y = -\beta/\Delta$, $z = -\gamma/\Delta$, $\Delta = \alpha^2 + \gamma^2 + (\beta - \gamma)^2$.

[3
$$^{\times}$$
] R ; $a \oplus b = a + b$, $a \otimes b = 0$.

[4×] Positive and negative integers and zero; $\oplus = +$, $\otimes = \times$. (All $a_1e_1 + a_2e_2$ with a_1 and a_2 real, $e_1^2 = 0$, $e_1e_2 = e_2e_1 = e_1$, $e_2^2 = e_2$; $\oplus = +$,

$$\otimes = \times$$
; then $e_1 \otimes y = i_{\times} = e_2$ is impossible since $e_1(y_1e_1 + y_2e_2) = y_2e_1$.)

[6[×]] All quaternions
$$ai + bj + ck + d$$
, a , b , c , d in R ; $\oplus = +$, $\otimes = \times$

$$[7]$$
 R_+ ; $\oplus = \otimes = \times$.

$$[5_k, k=2 \text{ or } 3]$$
. Any finite field, e. g., the classes of residues modulo p .

THE UNIVERSITY OF CHICAGO.